Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 76: 102306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34879287

RESUMO

Recent developments in data science in general and machine learning in particular have transformed the way experts envision the future of surgery. Surgical Data Science (SDS) is a new research field that aims to improve the quality of interventional healthcare through the capture, organization, analysis and modeling of data. While an increasing number of data-driven approaches and clinical applications have been studied in the fields of radiological and clinical data science, translational success stories are still lacking in surgery. In this publication, we shed light on the underlying reasons and provide a roadmap for future advances in the field. Based on an international workshop involving leading researchers in the field of SDS, we review current practice, key achievements and initiatives as well as available standards and tools for a number of topics relevant to the field, namely (1) infrastructure for data acquisition, storage and access in the presence of regulatory constraints, (2) data annotation and sharing and (3) data analytics. We further complement this technical perspective with (4) a review of currently available SDS products and the translational progress from academia and (5) a roadmap for faster clinical translation and exploitation of the full potential of SDS, based on an international multi-round Delphi process.


Assuntos
Ciência de Dados , Aprendizado de Máquina , Humanos
2.
Int J Comput Assist Radiol Surg ; 14(4): 685-696, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30443889

RESUMO

PURPOSE: Surgical workflow recognition and context-aware systems could allow better decision making and surgical planning by providing the focused information, which may eventually enhance surgical outcomes. While current developments in computer-assisted surgical systems are mostly focused on recognizing surgical phases, they lack recognition of surgical workflow sequence and other contextual element, e.g., "Instruments." Our study proposes a hybrid approach, i.e., using deep learning and knowledge representation, to facilitate recognition of the surgical workflow. METHODS: We implemented "Deep-Onto" network, which is an ensemble of deep learning models and knowledge management tools, ontology and production rules. As a prototypical scenario, we chose robot-assisted partial nephrectomy (RAPN). We annotated RAPN videos with surgical entities, e.g., "Step" and so forth. We performed different experiments, including the inter-subject variability, to recognize surgical steps. The corresponding subsequent steps along with other surgical contexts, i.e., "Actions," "Phase" and "Instruments," were also recognized. RESULTS: The system was able to recognize 10 RAPN steps with the prevalence-weighted macro-average (PWMA) recall of 0.83, PWMA precision of 0.74, PWMA F1 score of 0.76, and the accuracy of 74.29% on 9 videos of RAPN. CONCLUSION: We found that the combined use of deep learning and knowledge representation techniques is a promising approach for the multi-level recognition of RAPN surgical workflow.


Assuntos
Aprendizado Profundo , Neoplasias Renais/cirurgia , Nefrectomia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Fluxo de Trabalho , Humanos
3.
Int J Comput Assist Radiol Surg ; 13(9): 1397-1408, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30006820

RESUMO

PURPOSE: The development of common ontologies has recently been identified as one of the key challenges in the emerging field of surgical data science (SDS). However, past and existing initiatives in the domain of surgery have mainly been focussing on individual groups and failed to achieve widespread international acceptance by the research community. To address this challenge, the authors of this paper launched a European initiative-OntoSPM Collaborative Action-with the goal of establishing a framework for joint development of ontologies in the field of SDS. This manuscript summarizes the goals and the current status of the international initiative. METHODS: A workshop was organized in 2016, gathering the main European research groups having experience in developing and using ontologies in this domain. It led to the conclusion that a common ontology for surgical process models (SPM) was absolutely needed, and that the existing OntoSPM ontology could provide a good starting point toward the collaborative design and promotion of common, standard ontologies on SPM. RESULTS: The workshop led to the OntoSPM Collaborative Action-launched in mid-2016-with the objective to develop, maintain and promote the use of common ontologies of SPM relevant to the whole domain of SDS. The fundamental concept, the architecture, the management and curation of the common ontology have been established, making it ready for wider public use. CONCLUSION: The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts' suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.


Assuntos
Ontologias Biológicas , Procedimentos Cirúrgicos Minimamente Invasivos , Modelos Anatômicos , Reconhecimento Automatizado de Padrão , Europa (Continente) , Humanos , Cooperação Internacional
4.
Artif Intell Med ; 84: 50-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169646

RESUMO

Surgical training improves patient care, helps to reduce surgical risks, increases surgeon's confidence, and thus enhances overall patient safety. Current surgical training systems are more focused on developing technical skills, e.g. dexterity, of the surgeons while lacking the aspects of context-awareness and intra-operative real-time guidance. Context-aware intelligent training systems interpret the current surgical situation and help surgeons to train on surgical tasks. As a prototypical scenario, we chose Thoracentesis procedure in this work. We designed the context-aware software framework using the surgical process model encompassing ontology and production rules, based on the procedure descriptions obtained through textbooks and interviews, and ontology-based and marker-based object recognition, where the system tracked and recognised surgical instruments and materials in surgeon's hands and recognised surgical instruments on the surgical stand. The ontology was validated using annotated surgical videos, where the system identified "Anaesthesia" and "Aspiration" phase with 100% relative frequency and "Penetration" phase with 65% relative frequency. The system tracked surgical swab and 50mL syringe with approximately 88.23% and 100% accuracy in surgeon's hands and recognised surgical instruments with approximately 90% accuracy on the surgical stand. Surgical workflow training with the proposed system showed equivalent results as the traditional mentor-based training regime, thus this work is a step forward a new tool for context awareness and decision-making during surgical training.


Assuntos
Inteligência Artificial , Instrução por Computador/métodos , Educação Médica Continuada/métodos , Cirurgiões/educação , Toracentese/educação , Competência Clínica , Tomada de Decisão Clínica , Instrução por Computador/instrumentação , Sistemas de Apoio a Decisões Clínicas , Técnicas de Apoio para a Decisão , Humanos , Destreza Motora , Cirurgiões/psicologia , Instrumentos Cirúrgicos , Análise e Desempenho de Tarefas , Toracentese/instrumentação , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...